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In recent years, a number of new shock-capturing finite difference 
schemes, often called high resolution schemes, have been proposed. 
We have considered several variations of the TVD and FCT schemes 
and geometrical approaches such as MUSCL, ENO, and PPM. 
Included is an organized overview and classification of the schemes. 
Only essential features are described, and numerical implementation is 
discussed. Much of the mathematical theory is omitted, but a key 
source reference list is provided. In this paper we present a comparative 
study of these schemes applied to the Burgers' equation. The 
objective is to assess their performance for problems involving forma- 
tion and propagation of shocks, shock collisions, and expansion of 
discontinuities. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

The challenge of the numerical solution of hyperbolic 
conservation equations is to obtain high accuracy of the 
solution in both discontinuous (shock waves and contact 
discontinuities) and smooth regions. The upwind finite-dif- 
ference scheme, as generally known, can eliminate possible 
spurious oscillations in the neighborhood of shock waves 
and can guarantee the resolution of discontinuities without 
wiggles. But it possesses a strong numerical dissipation 
which spreads discontinuities over many grid points, and it 
produces a low accuracy in the smooth region of the solu- 
tion. The central difference scheme, on the other hand, gives 
good resolution in smooth regions, but introduces the 
spurious oscillations near steep gradients, and sometimes 
leads to nonlinear instability. 

To remedy the above difficulties, various new shock-cap- 
turing schemes have been developed in recent years. These 
schemes, usually called "high resolution schemes," have the 
following properties: they are at least of second-order 
accuracy in the smooth part of the solution; they sharply 
resolve discontinuities without generating spurious oscilla- 
tions; and in contrast to classical second or higher order 
scheme, they do not need a priori specified artificial 
viscosity. The basic concept behind all these high resolution 
schemes is to use a higher order scheme as much as possible 
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and in the meantime to intelligently add sufficient dissipa- 
tion in the localized steep gradient region to eliminate 
possible numerical oscillation. It is this adaptive dissipation 
property that distinguishes the modern (new) and classical 
(old) shock-capturing schemes. As a result, the modern 
shock-capturing schemes are nonlinear even when they are 
applied to linear problems. 

The purposes of this paper are: 

(1) to summarize the similarities, differences, and 
properties of the modern shock-capturing schemes; and 

(2) to compare their performances in solving the 
nonlinear equations. 

The modern shock-capturing schemes considered in this 
paper are: second-order TVD scheme of Roe [1, 2] and 
Sweby [3]; upwind TVD of Harten [4] and Yee et aL [5]; 
symmetric TVD of Yee [6, 7] and Davis [8]; one- 
parameter family TVD of Cbakravarthy and Osher [9]; 
ENO scheme of Harten et al. [10, 11]; FCT schemes of 
Zalesak [12] and McDonald and Ambrosiano [13]; 
MUSCL schemes of van Leer [14], Goodman and 
LeVeque [15], Davis [16], and Colella [17]; and PPM of 
Colella and Woodward [ 18 ]. 

Recently, Zalesak [19] has classified advanced schemes 
and assessed their performance on a one-dimensional linear 
advection in which many of the TVD and MUSCL schemes 
are equivalent. Also a comprehensive review of the TVD 
schemes for scalar and for systems of equations has been 
consolidated by Yee [7, 20], and an excellent assessment of 
the schemes for the shock tube problems has been reported. 
Van Leer [21] presented another comparative study on the 
upwind-differencing schemes of Godunov, Engquist and 
Osher, and Roe. 

In this paper one-dimensional inviscid Burgers' equation 
is taken as the test problem due to its properties pertinent to 
nonlinear wave propagation. Two test cases are considered: 
one is the propagation of an initial sine wave and the 
another one is the propagation of an initial discontinuous 
curve which involves shock collision and expansion of dis- 
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continuities. Since the equation is nonlinear, a consequence 
of the changing wave speed results in the coalescence of 
characteristics and the formation of discontinuous solutions 
which are similar to the shock waves in fluid dynamics. The 
assessment of the numerical schemes is based on the 
examination of the accuracy of predicting such nonlinear 
effects as: formation of shocks; propagation of shocks; 
expansion of discontinuities; and collision of shocks. As 
shown in the paper, some of the promoted and well-per- 
forming schemes for the linear equation may be inadequate 
for the nonlinear problems. 

The paper first describes the essential details of various 
schemes and their numerical formulation and then presents 
the comparisons and physical insights of two test cases of 
Burgers' equation. The conclusions are drawn in the last 
part of the paper. 

2. DESCRIPTIONS OF MODERN 
SHOCK-CAPTURING SCHEMES 

In this paper, we consider the numerical solution of initial 
value problems for hyperbolic conservation laws: 

u , + f x = 0 .  (2.1) 

Here u(x, t) is an unknown function and f (u )  is called flux 
function. Before introducing the finite-difference formula- 
tion, we need to define our discretization nomenclature and 
indexing practices. We will restrict the discussion to one- 
dimensional problems. Figure 1 illustrates our x - t  grid and 
the indexing practice. 

Integrating the conservation equation (2.1) within the 
/-control volume ( X i + l / 2 - - X  i 1/2) for t ' < t < t  "+1, we 
obtain 

tn+l 

t rl 

INTEGRATION CONTROL VOLUME 
/ 

i-2 i-1 i-1/2 i i+112 i÷1 i+2 

FIG. 1. Computational grid, indexing practice. 

or more of the time levels. With known u at time level t ", the 
,+1, is to key to finding the solution at new time level, u~ 

properly compute the interface fluxes, F~+ 1/2 and Fi_ m" In 
the following, we will discuss the major issues in calculating 
the F~ + 1/2 for different shock-capturing schemes. 

2.1. Classical Diffusive and Dispersive Schemes 

The three classical schemes (namely: upwind, central, and 
Lax-Wendroff)  use different assumptions for calculating 
the interface fluxes (Eq. (2.3)). The first-order upwind 
scheme uses: 

F U P  _ 1 i+a/2- -2( f i+l+f i ) - -½sign(a i+l /2) ( f i+l - - f i  ) (2.4) 

or 

FiUfl/2 = ½ (f~+l + f , ) -  ½ la~+ 1/21 A,+ 1/2, (2.5) 

!,7' - f [u (x i+  1/2, t)] dt 

tn+ l ( .  

+ Jr, f[u(x~_ll2,  t)]  dt. (2.2) 

The discrete nature of the problem forces us to replace the 
exact integrals by the average values for the dependent 

n and n+l variables u i u~ , 

n+l At 
u i = u T - ~ x ( F i + l / z - F i _ l / 2 ) ,  (2.3) 

where 

A i +  1/2 = u i +  1 - -  u i -  (2.6) 

The wave speed, a, is computed as 

( 1_ 

ae + 1/2 = t A'~;/2 
if Ai+ l/2 ,/=O 

otherwise. 

(2.7) 

Equation (2.5) may not satisfy the entropy condition, so 
that lai+ 1/21 is replaced by O(ai+ 1/2) which is defined as 

where A x =  Xi_t_l /2--X i 1/2 and will be taken as constant 
unless otherwise stated and At = t n+ 1 _ t". F;+ 1/2 and Fi_ 1/2 
are called transportive fluxes and are functions off ,  at one 

~ ( a i +  1/2) = max(lai+ 1/2 I, 6), 

where 6 is a small positive number. 

(2.8) 
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The second-order central differencing scheme uses 

CN Fi+l/2 = 21- ( f i + l  + f / ) "  (2.9) 

2. Predictor-corrector FCT technique of Boris 
et al. [22,23], Zalesak [-12,24], and McDonald and 
Ambrosiano [13]. 

The above schemes are first order in time. 
The Lax-Wendroff (LW) scheme is second order in time 

and space and its flux is defined as 

LW 1 2 2 
Fi+l/2:~(fi+l--}-fi)---~ai+l/zAi+l/2, (2.10) 

where 

2=At/Ax.  (2.11) 

It is well known that the upwind scheme is too dissipative 
while the central and LW schemes are too dispersive in the 
vicinity of strong gradients. 

2.2. Classification of Advanced Shock-Capturing Schemes 

Currently known advanced shock-capturing schemes can 
be classified on the basis of: 

1. The principle used to compute interface fluxes 
(algebraic and geometric); 

2. Order of accuracy near the extrema points (ENO and 
TVD); and 

3. Time discretization (implicit or explicit, one-step or 
multistep predictor-corrector). 

We will follow the first classification approach, used by 
Zalesak [19], and organize our presentation into two 
classes. 

Algebraic Approaches 

Most of the schemes in this class, often called flux-limited 
schemes, are constructed in the hybrid form of added 
low-order, F L, and high-order, F H, approximations. 
Accordingly, the numerical flux is: 

H Fi+ 1/2 = ei+ 1/2Fi+ 1/2 + (1 -- ci+ 1/2) FiC+ 1/2 

L H =Fi+l/2+ci+m(Fi+l/2--FL+l/2). (2.12) 

The weight function, c, is usually computed based on flux 
limiters. Two such flux-limiter techniques are: 

1. One-step TVD technique, representing a broad 
class, ranging from Roe's Superbee [1, 2], Harten [4], 
Chakravarthy and Osher [9], to high-order schemes of 
Yee [7, 20]. 

Geometric Approaches 

In geometric approach, attempts are made to reconstruct 
dependent variable, u, within each control volume, subject 
to certain monotonic constraints. These constraints give the 
variable u at both sides of interface, Ui+l/2, L a n d  Ui+l/2, R. 

The interface flux is then computed using an exact or 
approximate Riemann solver. The best representative 
schemes in this class are: Godunov [25], van Leer's 
MUSCL [14], Colella and Woodward's PPM [18], and 
Harten and Osher's ENO [10, 11]. 

As will be seen, the above subdivisions are not really 
distinct, as several algebraic schemes can have geometric 
interpretations. Likewise, some geometric schemes can be 
derived from algebraic manipulations. 

In the following subsections, brief descriptions of TVD 
and FCT techniques of algebraic approach and MUSCL, 
ENO, and PPM techniques of geometric approach are 
given. Due to space limitations, we will present only 
key features of the schemes. For more details on TVD 
and MUSCL type schemes, interested readers should 
refer to Helen Yee's excellent reviews [7, 20] of advanced 
differencing schemes and the original papers. 

2.3. Algebraic Approach 

The key to the success of the algebraic approach is in 
properly computing ci+1/2 so that the solution from the 
numerical flux in Eq. (2.12) will satisfy certain desired 
properties. One such property is called total variation 
diminishing (TVD) introduced by Harten [6] to develop 
oscillation-free-schemes. He derived a set of sufficient condi- 
tions which are very useful in checking or constructing 
second-order TVD schemes. The scheme satisfying the TVD 
requirement has the property that it can prevent the total 
variation of the numerical approximations from increasing. 
The main property of a TVD scheme is that, unlike a 
monotone scheme (such as upwind), it can be second-order 
accurate and is oscillation-free across discontinuities. 

The common feature of all TVD schemes is that even 
the high-order accurate schemes reduce to first order at 
local extrema. Recently, some attempts at improving this 
shortcoming have been reported by Harten et al. [10, 11 ] 
in ENO (discussed below), by Shu [26] in TVB (total 
variation bounded), and by Shu and Osher [27, 28] in 
numerical flux-based ENO. 

The fundamental principle of constructing a TVD scheme 
is to combine low and high order fluxes so that limiters are 
imposed on the higher order fluxes to prevent formation of 
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local extrema. In the following, we give a brief description 
of selected, representative TVD schemes. 

Second-Order TVD Scheme of  Roe and Sweby 

The scheme of Roe and Sweby [ 1-3 ] is a combination of 
first-order upwind and Lax-Windroff schemes. In terms 
of e in Eq. (2.12), it is defined as: 

Symmetric TVD Scheme of  Yee, Roe, and Davis 

The symmetric TVD scheme developed by Yee [6] is a 
generalization for Lax-Wendroff TVD schemes of Roe [ 1 ] 
and Davis [8]. Basically, ~b(r) in Eq. (2.14) is replaced by 
¢(r+, r - ) ,  

we ¢(r +, r -  Lw ue Fi+ ,/2 = Fi+ 1/2 "~ )(F,+ 1/2 - -  F~+ 1 /2 ) ,  (2.19) 

Ci+l/2 = ~(r) (2.13) where 

so that 

where 

uP (j(r)(FLWl/2 up Fi+ 1/2 = Fi+ 1/2 + - Fi+ ,/2), (2.14) 

r m _ 
( lai+ , / 2 - .  I - 2a,2+ , / 2 - . )  A,+ 1/2- o 

(la,+x/zl--~a2+l/2)A,+l/2 ' 

o- = sign(ai+ 1/2) (2.15) 

and ~b(r) is called a limiter function. 
It can be seen that the classical schemes can be recovered 

by setting 

~ ( r ) = 0 ,  

~b(r) = 1, 

~(r)  = r, 

Sweby 1-3] 

upwind scheme (2.5), 

Lax-Wendroff scheme (2.10), (2.16) 

Warmin&Beam scheme. 

gave detailed conditions on the limiter 
function in order to satisfy TVD sufficient conditions. Some 
commonly used limiter functions are: 

Minimod limiter, 

~b(r) = minimod(1, r) 

Monotonic limiter, 

~b(r) = (r + Irl )/(1 + r) 

(2.17a) 

(2.17b) 

MUSCL limiter, 

r + A i +  1/2+ 1 r -  = A i + l / 2 -  1 (2.20) 
A i +  1/2 A i +  1/2 

The definition of two-argument limiter ~b(r +, r ) has a 
similar form as single-value limiters defined by Eqs. (2.17a)- 
(2.17d). For example, 

Minimod limiters, 

~b(r +, r -  ) = minimod(1, r + , r -  ) (2.21a) 

~b(r +, r -  ) = minimod(1, r + ) + minimod(1, r ) - 1; (2.21b) 

MUSCL limiter, 

~b(r +, r - ) = m a x ( 0 ,  min(2, 2r +, 2r - ,  ½ (r + + r-))) .  (2.21c) 

An alternative principle to obtain two-parameter limiters 
is to use any limiter of Eqs. (2.17a)-(2.17d) in conjunction 
with 

(~(r+,r-)=O(r+)+q~(r ) - a ,  (2.22) 

where constant a may be either 1 (for minimod) or 2 (for the 
others). 

The above "three-argument" minimod function in 
Eq. (2.21a) has similar form as a "two-argument" minimod 
defined by Eq. (2.18). Here, it is equal to: (a) the smallest 
number in absolute value if the list of argument is of the 
same sign; or (b) zero if any argument is of the opposite 
sign. 

~b(r) = max(0, min(2, 2r, (1 + r)/2)) (2.17c) 

Superbee limiter, 

~b(r) = max(0, min(2r, 1), min(r, 2)), (2.17d) 

where minimod is a function defined as 

minimod(a, b) 

= sign(a) max(0, min(lal, sign(a)-b)). (2.18) 

One-Parameter Family TVD Scheme of  Chakravarthy 
and Osher 

Instead of using the Lax-Wendroff scheme for the high- 
order flux in Eq. (2.12), the TVD scheme of Chakravarthy 
and Osher uses a second-order central difference scheme. It 
can be verified that the original formula of the scheme can 
be simplified to 

FCO ~-uP . CN _FUP ] (2.23) 
i +  1/2 = - - i +  1/2 - -  ~(r)[Fi+ 1/2 i +  1/2 " 
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The ratio r is still defined as 

ai+ 1/2-a "Ai+ 1 / 2 - a  r - (2.24) 
ai+ 1/2 " Ai+ 1/2 

and the limiter function ~b(r) is 

¢(r) = ~ - -~  minimod ( ~ ,  l )  

l + q  
+ ---~-- minimod(1, re)), (2.25) 

He proposed to solve a modified flux equation of 

u t + ( f  +g)x=O (2.31) 

by an upwind scheme with g(x) selected in such a way that 
the resulting scheme is a second-order TVD for Eq. (2.1). 
Harten and Yee [-7] proposed the function g(x) as 

gi+ 1/2 = A i +  1/2 (2.32) 

and 

where ~o is a compressive parameter defined as 

3 - t /  
- -  (2.26) 1~<~o~< 1 _  q • 

The spatial accuracy of the scheme is controlled by the 
parameter t/, which may take one of the following values: 

t l = -  1 

t /=O 

1 ~/=~ 

tt=½ 
q = l  

fully upwind scheme 

no name 

Fromm scheme 

third-order upwind-biased scheme 

second-order scheme 

central difference scheme. 

(2.27) 

The above flux is first order accurate in time. However, it 
is the only algebraic scheme whose higher order component 
in space is greater than second order. One way to obtain 
second-order time discretization is to replace the forward 
Euler time-discretization by some linear multi-step method 
such as the Runge-Kutta-type time discretization. For 
example, we can obtain 

n + 1/2 ,~X n n U i = U T - - ~ t  [ F ~ + m - - F i _ m ]  (2.28a) 

u7+1 = ui" _ --~Ax L-- "z"+ V2-- FT+- ~/22 (2.28b) 

Upwind TVD Scheme of  Harten and Yee 

Harten [4]  observed that the first-order solution applied 
to the equation 

u, + f ~  = -Zx(13u& (2.29) 

results in a second-order accurate approximation to 
Eq. (2.1), where 

gi+----!Zgi) if A i + m # O  

} A,~1/2 if Z~i+ 1/2 ~- O, 
Yi+ l/2= fli+ l/2 

k 

(2.33) 

so that 

Fi+ 1/2 -- F i+UPl/2 + ~b(r+ ) +2 (b(r- ) ( F i+ l/2LW _ F i+ 

1 
- ~ [ f f ( a i +  1/2 + 7 i+  1/2) - ¢(ai+ 1/2)] A , +  1/2, 

(2.34) 

where r + a n d r  are defined in Eq. (2.20). 
Comparing Eq. (2.34) with Eq. (2.14), one can see that 

¢(r), which is upwind weighted limiter function, has now 
been replaced by a central-type limiter (in which no direc- 
tion of characteristic velocity is involved). Fi+l/2 now 
contains additional terms proportional to Ai+ 1/2. Limiter 
functions (2.17a)-(2.17d) can be equally applied to ~b(r + ) 
and ~b(r- ). 

Flux-Splitting TVD Scheme of Liou 

The constructions of the TVD scheme of Liou [29] is 
somewhat similar to that of Harten and Yee's symmetric 
TVD scheme. The flux is, however, split as 

f i = f +  + f,:-, (2.35) 

where 

D a + f / - + l - f (  ,+1), 

a/++ 1 ~" max(ai+ 1 '  0 ) ,  

f7+1 = f ( a L 1 )  (2.36a) 

ai+ 1 = min(0, ai+ 1). 
(2.36b) 

The upwind flux in the flux splitting notation is 

fli + 1/2 = I [~l(ai + 1/2) -- ~.a2+ 1/23. (2.30) UP 
Fi+l/2= f + +f7+1 (2.37) 

581/102/1-10 
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and Lax-Wendroff flux is 5. Limit or correct A i+ 1/2 as 

FL w 1 2 
/+172----~ (f/+l +f i ) - -~a i+l /2 ( f i+ l - - f / ) .  (2.38) 

As a result, Liou's TVD flux can be written in a form similar 
to Eq. (2.34), 

. 

A ~+ 1 / 2  = ei + 1 / 2  A i+ 1/2 ; (2.43) 

Apply the limited ant/diffusive flux, 

u; +1 = u~d_ 2(A ;+ 1/2 - -  A c_ 1/2). (2.44) 

U P  1 Fi+ ,/2 = Fi+ 1/2 ~- 2 E~b/( r+ ) + ~bi+ l ( r -  )] 
L W  U P  1 - r i + , / 2 ]  [Oi ( r+) -q) i+l ( r - ) ]  x [F/+ 1/2 + 

x [A+f~--2a/+l/2 A +f*] ,  (2.39) 

where 

3-f+ 3+f- 
r + =  - -  = ( ) / + 1 - ( ) /  A+f+ ,  r A - f - '  A+ 

A - = ( ) ~ - ( ) / _ , ,  f * = f + - f - .  (2.40) 

The l/miter functions defined in Eq. (2.17) can be used. The 
advantage of using flux-splitting is that it satisfies entropy 
inequality and is thereby capable of selecting a physically 
admissible solution. A contact discontinuity, however, will 
be smeared over a large extent. 

FCT Scheme of  Boris and Book 

The flux corrected transport (FCT) scheme was 
originally developed by Boris and Book [22, 23 ], and later 
extended by Zalesak [12]. In the sense of preserving 
monotonicity of the solution, FCT is one kind of TVD 
scheme. The difference is that the TVD schemes discussed 
above are of one step, while the FCT is of two steps. The 
two-step FCT is basically a hybrid scheme consisting of a 
combined first- and high-order schemes. It computes a 
provisional update from a first-order scheme, and then 
filters the high-order correction by the use of flux l/miters to 
prevent the occurrence of new extrema. Thus, in a region 
where the variables vary smoothly, the high-order scheme is 
employed. In a region where the variables vary abruptly, the 
low-order scheme is favored. 

Formally, the FCT procedure is as follows [12]: 

L 1. Compute low order flux F~+1/2, 

2. Compute high-order flux Fp+ ,/2 ; 

3. Define the ant/diffusive flux; 

H Ae+ 1/2 = Fg+ 1/2 - F~+ 1/2 ; (2.41) 

4. Compute the updated low-order solution, 

u'a= u" - 2(F L ,/2 - F}+ ,/2); (2.42) 

In the above, Step 5 is critical. It ensures that u n + 1, com- 
puted in Step 6, does not have any new extremum (as com- 
pared to those which exist in u 'd and u'). The definition of 
high-order flux in Step 2 is also important for final accuracy 
of the solution. 

The original algorithm for flux-limiting was given by 
Boris and Book [22, 23]. The higher order flux is by 
Lax-Wendroff scheme and the low-order flux is by upwind. 
They defined the antidiffusive flux as 

A ; + l / 2 = S ' m a x { O ,  minIlAi+l/2], 

S(ue+2 u/+l) - -  ~ b / i  - -  b / i - -  1 

' 2 J~ '  

S = sign(A/+ 1/2)- (2.45) 

It is noticed that the difference between the limiting proce- 
dures of TVD and FCT schemes lies in that FCT schemes 
use an updated value, whereas TVD schemes use the old 
time level value. That is the reason the FCT scheme is of two 
steps. 

F CT Scheme of  ZaIesak 

In Zalesak's version of the FCT [12], the coefficient 
c/+1/2 is obtained from a complicated recipe which is 
omitted here. The interested reader should refer to the 
original paper for the details. The high-order scheme is by 
the fourth, sixth, and eighth order central difference. 

F CT Scheme of  McDonald and Ambrosiano 

McDonald and Ambrosiano 1-13] found that Zalesak's 
FCT scheme, employing a donor cell algorithm as the first 
part and a flux-limited spatially centered high-order correc- 
tion, produced some pathological results. The worst of these 
included the formation of"staircases" on a steepening slope. 
In another case, a non-physical shock, arising out of an 
expansion region, was produced. They improved the FCT 
scheme through the use of totally one-sided differences. 

The high-order upwind for flux function is 

3 1 [ ~ f / -  ~ f / -  1 if ai+l/2>>-O 
FH+ 1/2 = 3 1 if ai+ O. (~ f i+  2 -- -~fi+ 1 l/Z < 

(2.46) 
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The low-order scheme is the first-order upwind, and the 
antidiffusive flux is the same as Eq. (2.45). 

2.4. Geometrically Formulated Schemes 

The notion of algebraic and geometric approaches was 
introduced by Goodman and LeVeque 1-15]. The former 
scheme is to algebraically enforce some constraints on 
the problem (such as on flux). Thus, algebraic relations 
are derived which guarantee certain desirable properties. 
Geometric approach, on the other hand, attempts to: 

1. Interpolate the dependent variable within the control 
volume including cell interface (where a discontinuity may 
occur); and 

2. Compute the interface fluxes using exact or approxi- 
mate Riemann solver or by tracing characteristics to the cell 
interface. 

The detailed procedure of a geometric approach can be 
divided into the following steps: 

1. Compute profiles of the dependent variable in each 
zone by interpolating slopes or curvatures at the center of 
zones, subject to certain monotonicity constraints. This 
gives rise to a global distribution of the dependent variable 
which is piecewise constant (Godunov), linear (MUSCL), 
or parabolic (PPM) in each zone with jump discontinuities 
(ue+ */2,L, Ui+ 1/2.R) at the edge of zones. 

2. Compute u~+1/2, the solution of the old time at the 
edge of zones, by solving the Riemann problems which 
resolve the jump discontinuities at the edge of the zones 
(with ui+ 1/2, L, and ui+ 1/2, R)" 

n + 1/2 3. Compute u e+ 1/2, an approximation of the solution at 
the edge of the zone at the half time step, by approximately 
tracing the characteristics and solving the difference 
approximation to the characteristics equations, or by 
transporting the distributed profile. 

tM~ p n  + 1/2 4. Compute time-averaged value v._,.+ 1/2- 

5. Use the above flux to calculate the dependent 
quantities: 

n + l  n ][~,n+l/2 p n +  1/2] (2.47) Ui ~Ui - - '~K-- i+  1/2 ----i--1/2l" 

Different schemes use different methods to evaluate 
u~+1/2 or Fi+I/2. In the following, we will discuss them 
individually. 

[-30]. In his MUSCL (monotonic upwind scheme for con- 
servation laws) scheme, the value of the dependent variable 
at the grid cell interface is obtained through the following 
slope (minimod) limiters [30]: 

ui+~/2=U~+l-¼ [(1-rl)AT+3/2+(l+tl)A~+l/2 (2.48a) 
L U~+l/2=u~+¼[(1-rl)A~_l/2+(l+rl)AT+l/2] (2.48b) 

AT+ 1/2 = minimod(A~+ 1/2, o)A~_ 1/2) (2.48c) 

A/~+ 1/2 = minimod(Ai+ 1/2, ('0zJ i+ 3/2)" (2.48d) 

The spatial order of accuracy is determined by Eq. (2.26), 
and Roe's approximate Riemann solver gives 

1 
F(Un+ 1/2) = 2 If(ui+ 1/2, R) +f(ui+ 1/2, L) 

_ f(ui__2_+l_/2,R) --f(ui+ 1/2~L) 
I ( U i +  1/2, R - -  Ui+ 1/2, L)  I 

X (Ui+ I/2, R - -  Ui+ 1/2, L ) ] "  (2.49) 

To obtain a second-order time-discretization (in addition 
to the above higher order spatial discretization) one can 
replace the forward Euler time-discretization (2.47) by some 
linear multiple step method (see Eql (2.28)) or by the 
Runge-Kutta-type of discretization. 

MUSCL Scheme of Goodman and Le Veque 

Goodman and LeVeque [15] derived a second-order 
accurate TVD scheme using a geometric approach in line 
with van Leer's work. In addition to choosing the slope 
properly in the piecewise linear approximation for 
dependent variable, the scheme is accomplished by approxi- 
mating the flux functionfto be piecewise linear. The purpose 
of the later approximation is that the modified equation 
with piecewise linear initial data can be efficiently solved 
analytically. It also has the advantage of ease in getting 

n + l  F(U~+l/2) through characteristic tracing. Actually, for a 
linear problem it agrees with one of the flux-limiter methods 
of the Roe-Sweby TVD scheme. No such agreement exists 
for the nonlinear problem. 

A piecewise linear function of u denoted by v in the region 
x~_ 1/2 and xi+ 1/2is constructed as 

MUSCL Scheme of van Leer 

Van Leer [14] observed that one can obtain spatially 
higher-order accuracy in the original Godunov scheme by 
replacing piecewise constant data of the Riemann problem 
with piecewise linear data. In addition, he replaced an exact 
Riemann solver by Roe's approximate Riemann solver 

n X -- X i (2.50) V(x, t")=U 7 + S~ AX ' 

where S 7 is determined from some limiter functions, for 
example, 

$7 = minimod(Ai+ 1/2, Ai 1/2); (2.51) 
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un+I/2. R and u n + I / 2 ,  L ,  a t  interface, are calculated using 
Eq. (2.50), 

- " ~ . . . . .  (2.52) l 'li+l/2, R - - b l i + l - - ~ S i + l ,  Ui+I/2,  L - - U  i -~-l  S i . 

Assume a piecewise linear function of flux on u (denoted by 
g), with a slope g;, 

I f(ui+l-/2"R)-f(l'li+l/2'L) if $ 7 ~ 0  

( U i +  1/2, R - -  / ' / i+ 1/2, L)  (2.53) 

g; = (f'(u~) if S 7 = 0 

then the flux is 

Fi+l/2-At . g[v(x~+l/2, t)] dt 

1/2,R)--52Si(gi) if > 0  = f f ( u ' +  ~ . , 2  f ,  
( f l u , +  I /2 ,L)  - -  1 n , 2 f ,  (2.54) 2Se(gi+l) if <0.  

MUSCL Scheme of Colella 

Colella [17] used a two-step algorithm to calculate the 
slope of u in each zone. The first guess is a monotonized 
central difference algorithm discussed by van Leer [ 14]: 

(~iUi = 2 minimod(A~+l/2, A~ 1/2) (2.55) 

(~fui=min( (di+l/2-t-di-1/2)'c~iui)2 

× sign(A~+ 1/2 + Ae 1/2). (2.56) 

Finally, he calculated S 7 by differencing the values at two 
points on either side of i obtained by using (Syu as the slope: 

$7 = min[ 2 Idi+ 1/2 "t- d i _  1/2 - -  1 ( 6 f b / i +  1 - -  (~fbti)l ' 6 f b l i ]  

x sign(At+ 1/2 + d~_ 1/2). (2.57) 

In the case where the minima in Eq. (2.55)-(2.57) are 
obtained in the first argument, one obtains 

ST=~(U,+l-U,-1)-l~(U,+2-ui 2). (2.58) 

This is a fourth-order finite difference approximation to 
du/dx. Thus, it is well behaved in the regions where the 
solution is smooth. 

sign(Ai+ 1/2 + ZJi-- 1/2) 

xmin(  1 Idi+l/2+Ae_l/2l, 2 IAi+i/2l, 2 [ z J i_  1/2[ ) 

$7= ~ if d i + l / 2  " A i _ l / 2 > 0  

I 0, otherwise. 

(2.59) 

It is basically the original van Leer's MUSCL limiter 
[14] in Eq. (2.56). Instead of Roe's approximate Riemann 
solver, as used by van Leer [30], Davis used the 
approximate Riemann solution of Harten and Lax [31 ]. It 
contains only one intermediate state for any hyperbolic 
conservation law. The construction of this approximate 
solution assumes that the bounds on the smallest and 
largest signal velocities (a L and aR) in the exact Riemann 
solution are available a priori. The flux on a cell face by this 
approximation is then given by 

fL when 0 < a L 

) - - a L  f R +  aL f L +  
Fi+ 1/2 ~ ~aR  -- aL aR -- aL 

when a L < 0 < a R 

k.fR when aR < 0. 

aRaL (U R - -  UL)  
a R -- a L 

(2.60) 

Davis proposed that the ae and a R be determined as 

aL = min[fll(UL), fll(UR)], 

aR = max[flm(UL), flm(UR) ], 
(2.61) 

where J~l and tim are minimum and maximum characteristic 
speeds, respectively. 

To obtain high-order accuracy in time, Davis proposed 
the explicit predictor-corrector scheme, 

(2.62) 

and 

n + l  n ~ v r ,  / n + l / 2  Inn + 1/2 
bli ~----Ui - - A I I " i + I / 2 ~ U i + I / 2 ,  R ,  ~ i + l / 2 , L !  

- -  F i  - t- n + l / 2  un  + l/2 "1] 
1/2kt~i--1/2, R,  i - -1 /2 ,LAI ,  (2.64) 

where 

MUSCL Scheme of Davis 

In Davis' MUSCL scheme [16], the piecewise-linear 
interpolation of u is assumed, and the slope of the profile is 
determined from a minimod function of: 

F [~1n+1/2 . n + 1 / 2  
i + 1 / 2 ~ i + 1 / 2 ,  R,  u i +  1/2, L} 

1 n . n + 1/2 1 n 
= Fi+ 1/2( b /n+  1/2 ..]_ 2 S i  ' t"ti+ 1 - -  2 S i +  1). 

The flux function F,+m is calculated based 
approximate Riemann solver (Eq. (2.49)). 

(2.64) 

on the 
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ENO Scheme of Harten and Osher 

Harten and Osher [10] observed that a TVD scheme, 
which is constructed to prevent an increase in the total 
variation of the numerical approximations, has at most 
first-order accuracy. They consequently constructed a 
new class of schemes which they called ENO schemes 
(essentially non-oscillatory). These schemes are essentially 
non-oscillatory , uniformly second-order accurate, and do 
not possess undesired clipping phenomena. Unlike TVD 
schemes, these non-oscillatory schemes are not required to 
damp the values of each local extremem at every single time 
step. Instead, they are allowed to occasionally accentuate 
local extrema. 

The major disadvantage of ENO schemes is that they are 
more expensive than TVD schemes. This is due to the 
fact that ENO schemes use wider (7-point vs 5-point) finite- 
difference stencil. 

For  slope S 7, instead of using minimod of Eq. (2.51), 
Harten and Osher used: 

S 7 = minimod(Ai+ 1/2 - D~+ 1/2, /li-- 1/2 "q- D~_ 1/2) (2.65) and 

where D denotes the second-order curvature term: 

Di+ m = minimod(Di+ 1, Di) 

= minimod(ui + 2 - 2ui + 1 + ui, ui + 1 - -  2ui + ui_ 1 )" 

(2.66) 

The time evolution of the above profile results in the 
following flux at cell face: 

Fi+ 1/2 = 

e f(uT) + ½ ai+ 1/2(1 -- 2ai_ 1/2) 3 n  

[1 + 2(ai+ 1/2 - a i _  1/2)] 

if ai+l/2>~O 
f(uT+ 1 ) 1 n ai+ 1/2( 1 + )~ai+ 3/2) Si+ 1 

[1 + 2(ai+ 1/2 - -  ai_ 1/2)] 

if ai+l/2 <0.  

(2.67) 

For  the nonlinear case, Harten and Osher proposed a FNO 
scheme as: 

f 1 1--()~/2)(ai+3/2-k-ai+1/2)87 f (u ' /  +-21-+(2/2)(ai+l/z--ai_l/2) ) 
if a~+l/2 > 0  

Fi+1/2= ( 1 l +(2/2)(ai+3/2+ai+1/2) ) 
f u'~+t--2 1 + (2/2)(ai+3/2-ai+l/2) S'~+1 

if ai+1/2 <<. O. 
(2.68) 

The above ENO and FNO schemes are constructed in the 
base of a cell-averaged primitive variable. Recently, Shu and 

Osher [27, 28] have extended the ENO construction to a 
numerical flux based procedure. Interested readers should 
refer to the original paper for details. It is expected that for 
linear problems both construction procedures are the same. 

PPM Scheme of ColelIa and Woodward 

The piecewise-parabolic method (PPM) due to Colella 
and Woodward [18] is a higher-order extension of 
Godunov's method of the type introduced by van Leer in his 
MUSCL [14] and Colella's modified MUSCL [17] algo- 
rithms. The PPM scheme uses an interpolation which is 
piecewise continuous with u given by a parabolic profile in 
each zone, 

b/(X) = Ui l/2, R"~-~[Abli'-~-U6, i(1--~)], ( 2 . 6 9 )  

where 

_ ( x -  x 3  
Ax ' x~-l/z<<'x<<'Xi+l/2 (2.70a) 

Aui = u i + 1/2.L -- Ui- 1/2.R (2.70b) 

u6;i = 6[ui-- ½ (ui+ 1/2, L "~- Idi-- 1/2, R ) ] '  (2.70c) 

The left and right side state values for the Riemann solver, 
ui+ m,L and u~+ re, R, are calculated by first using an inter- 
polation scheme to obtain u(x) and an approximation to 
the value of u at xi+ 1/2, subject to the constraint that u~+ 1/2 
does not fall out of the range of values given by u~ and ui+ 1. 
The interface value is calculated as 

= 1  U b/i+ 1/2 ~(i+l+Ui)+~(6tui--6tUi+l), (2.71) 

where 

f min(16uil, 2 Idi+l/2[, 2 IA~ 1/21) sign(6u~) 

&tu~= ,1 if d i + l / 2  " di_ 1/2 > 0 
1,0 otherwise 

(2.72a) 

and 

6u~=l Iu~+ l-Ui_ l) (2.72b) 

if 6tu i = 6ui, the interface value, takes the simple form: 

Ui+l/z=V(Ui+l+Ui)-~(Ui+e+ui_l) .  (2.73) 

In smooth regions away from the extrema, the left and 
right states can be computed directly as 

Ui+ 1/2, R = Ui+ 1/2, L = b/i+ 1/2' (2.74) 
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As a result, the interpolation function u(x) is continuous at 
xi + 1/2. If the interpolation function u(x) takes on the values 
which are not between ai+ m,L and ai+ re, R, further limiting 
must be applied to fulfill monotonicity. The left and right 
state values Ui+~/Z,L and U;+~/2,R are therefore modified 
so that u(x) is a monotonic function on each interval 
(Xi-- 1/2, Xi+ 1/2)" Let 

dl = ui+ 1/2,1. - u 7  (2.75a) 

d2 = ui_ m.R -- U7 (2.75b) 

U i 1/2, R = u n  , H i +  I/2, L = U n 

if - d l •  d2 ~< 0 (2.75c) 

n Ui-- 1/2, R = 3Ui -- 2 U i +  1/2, L 

if - ½ (d~ - d~) > ~ ( d l -  d2) 2 (2.75d) 

n Ui+ 1/2. L = 3Ui -- 2Ui-- 1/2, R 

if ½ (d~ - d~) > ~ ( d l -  d2) 2. (2.75e) 

This step introduces discontinuities at the cell faces (zone 
edges). Finally, the cell face flux is computed as 

_ ffEuT+ ]/2,L(ai+ ,/2 A t ) ]  

f/+ 1/2 - -  [f[uT+ re.R( --ai+ ,/2 At)] 
if a i + ] / 2 > / O  

if ai + l/2 < O , 

(2.76) 

o r  

ut + uux=O (3.2) 

with the initial condition of 

u(x, 0)=Uo(X). (3.3) 

The characteristic speed, as indicated in Eq. (3.2), is u. 
Along the characteristic trajectory, 

dx 
- -  = u, (3 .4 )  dt 

the transport property, u, is constant. Since the charac- 
teristic speed u is not a constant, but depends on the solu- 
tion itself, Eq. (3.2) is a nonlinear wave equation, where 
each point on the wave front can propagate with a different 
speed. The result of changing wave speed leads to the 
formation of a discontinuous solution. 

In some cases, Eq. (3.1) admits an analytic solution up to 
the time at which a shock is formed. This solution may be 
found as 

u(x,t)=Uo(X-Ut). (3.5) 

where 

2 
Ui~+ I/2, L(X)=Ui+ I/2, L--~ [ Aui--(1--'~ ~) U6, i] 

for ~ _ x - x i  (2.77a) 
Axi 

U~'+I/2,R(X):Ui+I/2,R'q-2IAUi+I-]-tl--3 U6,i+ 

for ~_x-x i+l  (2.77b) 
Axi+ I 

3. R E S U L T S  A N D  D I S C U S S I O N S  

In the following, we will compare the performance of 
various shock-capturing schemes applied to Burgers' equa- 
tion. The main interest here will be on transient solution 
which includes formation, propagation, and collision of 
shocks, and expansion of discontinuities. 

The well-known inviscid Burgers' equation is written as 

(u2) 
u , +  T x = °  (3.1) 

The solution is generated by solving the nonlinear equa- 
tion (3.5) for u in terms o fx  and t. When a shock is formed, 
the solution can still be found through piecewise solution of 
Eq. (3.5) on both sides of the shock. 

0 , 4  

t=2 

t = l  t - -5  

u 

i 
" ~ ' ( I  J I [ i I 

~r 

F I G .  2. In i t ia l  c o n d i t i o n s  a n d  a n a l y t i c a l  so lu t ions  for  t he  f o r m a t i o n  

a n d  p r o p a g a t i o n  o f  shock .  
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3.1. Formation and Propagation of Shocks 

The first test case considered is from McDonald and 
Ambrosiano [ 13 ] and represents the wave propagation of 
an initial parabolic profile defined as 

y = x - 2 . 5  

uo(y) =max[0,  y(1 - y)]: y>~0 

uo(y) = -u0(y) :  y < 0, 

(3.6) 

where x varies from 0.0 to 5.0 and a cyclic boundary condi- 
tion is applied at two ends. The initial condition at t = 0 and 
analytical solution at different time are illustrated in Fig. 2. 

In the region of 3.0 ~< x < 3.5 (similarly applied to 1.5 ~< 
x < 2.0), the characteristic speed decreases (increases) with 
x, so that a shock tends to form. In the region 2.0 < x < 3.0, 
an expansion is present. At time of t = 1.0, all properties 
along the characteristic trajectory collapse so that two 
shocks are formed at about x = 3.5 and x = 4.5, respectively. 
After that they move with a velocity of 

u, = 1 (UL + UR), (3.7) 

where UL and UR are the speed on both sides of the shock 
front. The initial parabola wave now becomes an N-wave. 

Calculations were carried out on a uniform grid of 40 
intervals, and time step size was chosen as At/Ax = 0.4. The 
corresponding CFL is 0.1. The results to be presented are at 
t = 2.0 and t = 12.0, which are right after formation of the 
shock and after a certain time of the shock propagation. 

Shown in Figs. 3a are the results of TVD schemes at times 
2.0 and 12.0. Since most TVD schemes are a combination of 
upwind and Lax-Wendroff  schemes, we also display the 
results of both of these schemes in Fig. 3a and 3b, respec- 
tively. It is seen that the calculation with upwind scheme, as 
expected, is relatively dissipative, especially near the local 
maximum and minimum and in the shock front region. 

The results obtained with the Lax-Wendroff  scheme 
(Fig. 3b), on the other hand, show good results in the 
monotonic region and the ripples near the extreme at an 
earlier time when the solution is smooth. At a later time 
when the shocks form and propagate, the Lax-Wendroff  
scheme leads to a nonlinear instability, and the result is 
totally unacceptable. 

The Warming-Beam scheme, shown in Fig. 3c, sur- 
prisingly gives an excellent representation in both shock and 
smooth solutions. It would not have been a surprise if we 
looked at the mathematical meaning of minimod ~b(1, r). 
What the limiter tells us is that as long as the profile is 
monotonic ( r > 0 ) ,  the TVD scheme of Roe-and Sweby 
either picks up the Wanning-Beam scheme (~b(r)= r) if 
r < 1 or the Lax-Wendroff  scheme (~b(r)= 1) if r > 1. In 
other words, the Warming-Beam scheme satisfies the TVD 

sufficient conditions if 1 > r > 0  and the Lax-Wendroff  
scheme is TVD if r > 1. In the region before the local 
extrema, 1 > r > 0, we expect that the TVD scheme will 
most likely pick up the Warming-Beam scheme, which has 
no spurious oscillation, and will abandon Lax-Wendroff  
scheme, which gives overshoots and undershoots. 

Roe and Sweby's TVD scheme with a superbee limiter, 
as illustrated in Fig. 3d, and the upwind TVD scheme 
(modified flux approach of Harten and Yee) with a MUSCL 
limiter, illustrated in Fig. 3e, behave well in continuous and 
discontinuous portions of the solution. The symmetric TVD 
scheme with a MUSCL limiter, illustrated in Fig. 3f, does 
not perform well compared to Roe and Sweby's TVD 
scheme with a superbee limiter. One sees the ripples near the 
shock fronts and the slower propagation speed of the 
shocks. Actually, the limiting practice in the symmetric 
TVD scheme has no direction involved; r + and r are 
equally applied. This may sometimes lead to a non-physical 
backward propagation of dispersive ripples resulting from a 
sudden change in the slope. The symmetric TVD scheme, 
however, is much better than either the upwind or the 
Lax-Wendroff  schemes. Chakravarthy and Osher's TVD 
scheme with third-order accuracy (r/= ½), illustrated in 
Fig. 3g, performs exceptionally well. The solution is 
relatively crisp in the expansion region. Liou's flux-splitting 
TVD scheme with a monotonic limiter (Fig. 3h) is a little 
better than the symmetric TVD scheme. Near the sonic 
point (u = 0), the numerical solution of Liou's TVD scheme 
is not that smooth, due to the inherent difficulty with flux 
splitting. 

Shown in Fig. 3i and j are the results from Zalesak's FCT 
limiting algorithm for a second-order central difference in 
space and time, an eighth-order in space and fourth-order 
Runge-Kutta in time. Early in time, when the solution is still 
smooth, both schemes show remarkable accuracy and per- 
form better than TVD schemes. Later in time, however, the 
solutions show wiggles all over the place (even though they 
are very close to the exact solution). Careful examination of 
both figures reveals that there are "staircases" near the sonic 
point and upstream of the shocks. This pathology is not a 
result of nonlinear propagation, but is associated with 
the shape of the profile. The same behavior has also been 
observed when a semi-elliptic profile was transported by 
linear advection [13]. Because the slope of the function 
changes continuously from a finite value towards an infinite 
value (near the shock), there is a point in the curve from 
which the centered finite-difference derivative begins to 
produce Gribbs oscillation. When these are clipped by the 
flux-limiter, the staircase appears. Using the upwind FCT 
of McDonald and Ambrosiano, which is second-order 
accurate in space and time, the staircase disappears (see 
Fig. 3k), and the overall accuracy is comparable to TVD 
schemes. The result of the second-order centered difference 
scheme with Boris and Book's limiting algorithm, shown in 
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Fig. 31, is almost the same as the one with Zalesak's limiting 
algorithm, Fig. 3i. 

The MUSCL scheme of Goodman and LeVeque 
(Fig. 3m) gives excellent results in both smooth and dis- 
continuous regions of the solution. It is comparable with 
TVD schemes. The PPM scheme, shown in Fig. 3n, which 
assumes a parabolic distribution, indeed performs better 
than MUSCL schemes. It is especially obvious near the 
local extrema, both in the expansion and the shock regions. 
On the other hand, ENO and FNO schemes (Fig. 3o and 
3p) are more diffusive. Their solutions also display a ripple 
upstream of the shock. This gehavior is similar to that of the 
symmetric TVD scheme. FNO, as claimed by Harten and 
Osher [10], is better than ENO, especially near the 
expansion and sonic points. 

3.2. Expans ion  o f  Di scont inu i t i e s  and Col l i s ion  o f  S h o c k s  

The second test case, we propose for Burgers' equation, 
is the propagation of initial square waves in different 
directions. This test case contains both expansion of discon- 
tinuities and collision of shocks. The initial profile is 
specified as 

f_ 
1.0 2 . 0 > x > 0 . 2  

u(x, 0) = 0.5 3.0 > x > 2.0 
1.0 4.8 > x > 3.0 

0 otherwise 

(3.8) 

and is shown with the solid line ( t = 0 )  on Fig. 4. Two 
shocks are initially located at x = 2 (right moving shock) 
and at x = 3 (left moving shock). Additionally, two steep 
expansion discontinuities are located at x = 0.2 (expanding 
to the right) and at x = 4.8 (expanding to the left). 

The time evolution of the initial waves is also shown in 
Fig. 4. During the earlier time, at x =  0.2 and 4.8, two 
expansion fans appear. At x = 2.0 the shock with positive 
speed (u) moves to the right; and at x = 3.0 the shock with 
negative speed (u) moves to the left. At time = 1.0, two 
shocks meet and collide, and then become a single one, 
propagating to the left. 

In the numerical computations, we still use 40 grids and 
keep At/Ax = 0.4, so that the corresponding CFL is 0.4. The 
numerical results are presented at the time of t = 0.75 when 
the shocks are about to meet and at t = 2.0 when the two 
shocks collapse and form a single one. 

The upwind scheme result, shown in Fig. 5a, is so dif- 
fusive that the shocks and expansion fans are smeared out. 
The Lax-Wendroff  scheme (Fig. 5b) shows overshoots in 
the front of the shock where r is less than zero. Thus this 
scheme violates the TVD criterion. The Warming-Beam 
scheme (Fig. 5c), on the other hand, gives ripples in the 
expansion region instead in the front of the shock. The 
reason is because r is larger than 1 in the expansion part and 

1 . 0 -  

0 . 5  m 

u 0.0 

-0 .5 -  

-1.0 

t=0 
I 

' £'1 t--t=0.75 -'X// 
I 

! j 

I l l  / U  
I I  I / I1 c 

'11i, /li 
, , jg/ I 

/ I I 
2 3 4 5 

X 

FIG. 4. Initial conditions and analytical solutions for the case of 
expanding discontinuities and colliding shocks. 

TVD requires using the Lax-Wendroff  scheme. The super- 
bee limiter of Roe and Sweby's TVD scheme (Fig. 5d) again 
gives excellent results in the expansion and in the shock 
front regions. 

From Figs. 5e to g, we present the velocities from the 
same minimod type of limiter but different schemes: Roe 
and Sweby's TVD (Fig. 5e), the upwind TVD (Fig. 5f), and 
the symmetric TVD (Fig. 5g). For  Roe and Sweby's TVD 
method, one would expect the scheme to use the Lax-  
Wendroff algorithm in the expansion region and the 
Warming-Beam in front of the shock. Comparison of 
Fig. 5e with Fig. 5b and c proves the above point. Com- 
pared with the superbee limiter, the minimod limiter is more 
diffusive. The upwind TVD scheme is as good as Roe and 
Sweby's TVD scheme. The symmetric TVD scheme, with 
the same minimod limiter, is more diffusive than Roe and 
Sweby's TVD scheme. In comparing the two schemes, one 
finds that the difference is in the ~b(r) and ~b(r +, r - )  limiters: 

~b(r) = minimod(1, r) 

~b(r +, r -  ) = minimod(1, r + ) + minimod(1, r -  ) - 1. 
(3.9) 

We see that ~b(r +, r -  ) ~< ~b(r); therefore, the symmetric TVD 
scheme contains a larger amount of dissipation. 

The one-parameter family TVD scheme of Chakravarthy 
and Osher with t /= 0, i.e., Fromm's scheme (see Fig. 5h) is 
relatively compressive and gives good representation of 
discontinuities. It does not perform well in the expansion 
region. The flux-splitting TVD of Liou with minimod (not 
shown here) is similar to Roe and Sweby's TVD with the 
same limiter. 

Zalesak's second-order scheme (Fig. 5i) now shows 
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of Zalesak; (j) eighth-order FCT of Zalesak; (k) MUSCL of Davis; (1) MUSCL of Colella; (m) ENO of Harten and Osher; (n) PPM of Colella and 
Woodward. 
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comparable results with the TVD scheme. The high order 
scheme (Fig. 5j) would have been marvelous if it has no 
staircase. Davis' MUSCL gives two transition points across 
the shock (Fig. 5k). Colella's MUSCL (Fig. 51) is excellent. 
ENO is diffusive (Fig. 5m), and PPM is still competitive 
(Fig. 5n). 

4. SUMMARY AND CONCLUSIONS 

The present study has systematically assessed all 
advanced numerical schemes for nonlinear scalar transport 
problems. Essential mathematical details of each scheme 
have been documented. Likewise, full details of test 
problems and results of various schemes have been 
described. Several advanced shock-capturing schemes have 
been applied to solve the nonlinear Burgers' equation to 
assess their ability in resolving sharp discontinuity, 
expansion zone, and propagation and collision of shocks. 

A one-dimensional computer code has been written in 
which all of the known, advanced differencing schemes have 

been incorporated. The main conclusions from this study 
can be summarized as follows: 

1. For discontinuous functions, the Warming-Beam 
scheme generates pre-shock wiggles, whereas the Lax- 
Wendroff scheme generates post-shock wiggles. When 
combined in the form of a TVD scheme with "intelligent" 
switching, a high resolution shock capturing scheme has 
been obtained. The switching was achieved by applying the 
limiters. 

2. Some of the existing limiters, such as the superbee or 
MUSCL limiters, are more compressive than minimod or 
monotonic limiters. Compressive limiters capture dis- 
continuities with fewer transition points. However, for 
moving and dissipating shocks and at locally smooth 
extrema, it may create artificial inflection points. For steady 
state problems the choice would be a compressive limiter, 
while for transient flows probably a more dissipative limiter 
would be preferred. 

3. The performances of upwind TVD, symmetric TVD, 
and Roe and Sweby's TVD schemes are similar to each 
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other. Roe and Sweby's TVD, which has additional com- 
putational count in determining the direction of charac- 
teristic speed, usually performs better than symmetric TVD 
schemes, especially in the nonlinear problem. 

4. Chakravarthy and Osher's TVD scheme requires 
more computational effort, more limiting calculation, and 
an extra step of getting higher order time-discretization. The 
performance of this scheme is comparable with that of Roe 
and Sweby's TVD scheme. 

5. Liou's TVD scheme by flux-splitting also requires 
more operation counts. The results of this scheme are 
comparable to those of other TVD schemes. 

6. The FCT schemes are quite competitive with other 
schemes during the transition from smooth curve to shock. 
However, once a sharp discontinuity appears in the solu- 
tion, higher order centered finite difference gives rise to a 
series of staircases which eventually spoils the accuracy of 
the solution. 

7. In the geometric approach, MUSCL schemes are 
comparable with TVD schemes even though they are a 
little more dissipativel They certainly preserve all sharp 
discontinuities as well as smooth wave shapes. 

8. The PPM scheme is excellent in overall performance. 
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